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A method of integration over matrix variables: I1 

S Chadha, G Mahoux and M L Mehta 
Centre d'Etudes Nucleaires de Saclay, Boite Postale No 2 ,  91190 Gif-sur-Yvette, France 

Received 23 May 1980, in final form 25 September 1980 

Abstract. A method for evaluating the integral 

p-1 
+ 2 c  x trMiMi+l 

over p n x n Hermitian matrices is given in the limit of large n. This is an adaptation of an 
earlier article and should be read in conjunction with it. Explicit equations are written only 
for the case of three matrices. 

1. Introduction 

Consider the integral over a chain of matrices 

P-1 

i = l  i = l  
V(M"')+2c 1 trM"'M""') fi dM"', (1.1) 

where M"), M"', , . . , M ( p )  are IZ x n Hermitian matrices, 

n 

d M =  dMii d(ReMij) d(ImMij), 
i = l  l r i < j < n  

and all integrals run from --03 to CO. We are interested in the limit 

(1.3) 

The special cases p = 1 and 2 of equation (1.1) have been considered before (Brkzin 
et a1 1978, Itzykson and Zuber 1980, Bessis 1979, Mehta 1980). The physical 
motivation for the consideration of such integrals is described in the first two references 
above, where they are shown to be relevant to the problem of counting planar vacuum 
diagrams in a # J ~  theory. For the evaluation of the limit (1.4) in the general case, we give 
below an adaptation of the method described earlier in Mehta 1979. Thus Eo(p, g, c) 
can in principle be evaluated for any p .  However, the algebra becomes tedious as p 
increases and soon becomes prohibitive. Only the result for p = 3 is given explicitly. 
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2. Integration over angle variables 

The integration over angle variables of the matrices M ( l ) ,  M") , . . . , in (1.1) above can 
be done step by step by using equation (2.24) of Mehta 1979 (denoted by ML in the 
following) 

( 2 ~ ) ( 1 / 2 ) n ( n - 1 )  ,. ( I dB exp(- W ( B )  + 2c tr A B )  = - dYexp  

(2.1) 
which is valid for any function W ( B )  depending only on the eigenvalues of B. Here 
X={xi ;  i = 1 , 2 , ,  . . , n }  are the eigenvalues of A,  Y = { y i }  are those of B,  A(X) = 
H i +  (xi -xi) and similarly for A( Y ) .  Thus 

p-1 n 
Zp(g, c) = K I  exp( - fl: V(X'")+2c 1 1 A(X(')) A(,(')) fi dX(j), (2.2) 

i = l  i = l  j = 1  i = l  

where X(j)= {x;'); j = 1,2 ,  . . . , n }  are the eigenvalues of M"). The constant K in front 
of the integral depends on c, n and p and can be determined by setting V(X) = Ci x'.  Its 
value is (see 8 5.1 below), 

3. Integration over eigenvalues: orthogonal polynomials 

As in ML, we write 

A(X) = det{Pi-1(Xj)}i.j= 1,' ,..., n, 

where Pi(x) is a polynomial with xi  as the highest order term, 

p i (x )  = x i  +lower powers of x. 

We shall choose these polynomials such that 

Since the exponential weight factor is not altered by a simultaneous change of sign of 
all its variables, one sees that 

Pi(-x)  = ( - l y P i ( X ) .  (3.5) 

X P i ( X )  =Pi+l(x)+RiP,- l (x)+S,P,-3(x)+ . . . 
As in ML let 
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and 

d 
dx 

PI (x) = -Pi(x) = iPi-l(x) + eiPi-3(x) + . . . 

= 1 Pijpj(x)* (3.7) 
i 

Differentiating both sides of (3.6) and expressing everything as linear combinations of 
Pi(x), we obtain 

[a ,p ]=ap-pa =I, (3.8) 

where 11 is the unit matrix (of infinite dimension). This equation completely determines 
the matrix p. An explicit expression of the solution as a series in terms of a is given in 
the Appendix. 

To obtain the relations between the h, and Ri, Si,. . . in a convenient form, we 
introduce the notations 

v(x, y ) =  V ( X ) - ~ C X Y  =x2+(g/n)x4-2cxy, (3.9) 

(&f)(x) = [ dY exP(-v(Y, X))f(Y), (3.10) 

&-“f = &(&“-‘f), q’l (3.11) 

(3.12) 

Then 

Wf,  g)  = (f, Ag) ,  

hi& = (Pi, &“-‘Pi) = (&-“-‘Pi, &”-“Pi), 

and the orthogonality property (3.3) can be written as 

l s q s p .  

Integration by parts gives 

(3.13) 

(3.14) 

The left-hand side can also be evaluated by expressing yP i (y )  and y3P i (y )  as linear 
combinations of Pi(y). Thus writing 

we obtain 

1 2 g 3  ) - -p.  1 
C 2c (3.17) 

(3.18) 



582 S Chadha, G Mahoux and M L  Mehta 

in two different ways, one obtains 

where the matrix C Y ( , )  is defined by 

(3.19) 

(3.20) 

Thus the matrices 
and (I, that is in terms of CY. 

. . . ,  CY(^-^) can be successively expressed in terms of ( ~ ( 0 )  = CY 

Now use equations (3.20) and (3.14) in the identity 

(x&q-'Pi, Ap-qPi) = (&"-'Pi, xAp-qPi) (3.21) 
to obtain 

- 1) ;ijhj = ( p  - 4 )  ;jihi. (3.22) 

The equations (3.17), (3.19) and (3.22) togetherwith (3.6) and (3.7) determine all the hi, 
Ri, Si, . . . in terms of ho. 

4. The large-n limit 

Setting f i  = hi/hi-l,  one obtains 

As 

(4.2) 

and f i ( g ,  c) / f i (O,  c)  is well-behaved near i = 1 and i = n, we obtain in the large-n limit 

where 
fi - nf ( x ) ,  x = i /n ,  

and f o ( x )  denotes the value of f ( x )  when g = 0. 

5. Some particular cases 

To be a little familiar with the method let us examine a few particular examples. 

5.1. The case g = 0 

Equations (3.17) and (3.19) read 

= ( l / c ) ( a  -BPI, 
a(q) = ( l / C b ( q - l )  - CY(q-2)9 q 2-2. 

(4.4) 
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Their solution is 
1 

a(q)= c-'(D,a -TDq-iP), 4 3 0 ,  

where the sequence of numbers Dq is determined by 

D-1= 0, Do=Di=1,  

Dq=Dq-l-c  Dq-2, q 3 2 ,  2 

i.e. 
1 + ( 1 - 4 ~  2 ) 1 /2  ) q+l  - ( 1  - (1 -4C2)'/2)'+1] 

D, = ( 1  - 4 ~ ~ ) - ' / ~ [  ( 
2 2 

Thus the matrices are explicitly known. For example, 

a(q);j-I,j = c-'Dq, 

a(q);i,i-l = c-'(DqRi -ijDq-l). 

Equation (3.22) for i = j - 1 and q = p gives 

c - P + l  D,-lhj = Rjhj-1 

while for q = p - 1 it gives 

C - P + 3  D,-;?hj = (Ri - j/2)hj-l.  

Elimination of R, from the last two equations gives 

fi = hj/hj-l = $jcp-l(Dp-l - C ' D , - ~ ) - ~  = 21c P 9 

or 
hi = 2-?!~i(p-~)Dpjh~.  

It is not very difficult to evaluate ho: 

P - 1  
ho = ho(O, c )  = I exp( -$ xi' +2c x,xj+l) dxl . . . dx, = I T ~ / ~ D P ~ / ~ ,  

1 

This gives finally 

n-1 

0 
Z,(O, C) = K .  t~ ! n hj(0, C )  

n-1 

0 
P 1 

D ; ~ ' ~ '  + n p / 2  nj! 

= K .  n !  n { 2 - i j ! C i ( ~ - 1 ) ~ - i - 1 / 2 ? r p / 2  

n ~2 -n(n  - 1 ) / 2  n ( n - l ) ( p - l ) / 2  
C - - 

1 

One can calculate Z,(O, c )  directly from equation (1.1) as well, 

z,(o, c l  = 2-(~/2)n(n-l)h;z = 2-~n(n--l)/Z p n 2 / 2  = 

583 

(5.3) 

(5.4) 

(5 .5 )  

(5.6) 

(5.7) 

( 5 . 8 )  

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.15) 

Equating the last two expressions one obtains the value of K given in equation (2.3). 
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5.2. The case p = 2 

Here 

a(1)= (l/c)[a + ( 2 g / n ) a 3 - M ,  

and equation (3.22) gives (q  = l), 

(5.16) 

caijhj = [a + (2g/n)a3 -&Ijihi. (5.17) 

Setting j =  i +  1, i - 1  and i -3 ,  one obtains the equations (3.16), (3.18) and (3.20) 
Of ML. 

5.3. The case p = 3 

Here in addition to (5.16) we have 

( ~ ( 2 )  = (l /c)[a(l)+(2g/n)a~l)I-a.  (5.18) 

Equation (3.22) for q = 2 states that 

a(1);ijhj = a(1);jihi. (5.19) 

In particular 

a(1);ij = 0 for Ii - j l  > 3, (5.20) 

a(l);i,i+3hi+3 = a (1);i+3,ihi (5.21) 
and 

a (l);i,i+lhi+I = a(l);i+l.ihi* (5.22) 

Writing explicitly these matrix elements from (5.16), (3.6) and (3.7) we obtain 

(5.23) 

and 

(5.24) 
2g i 
n 2 

+ - ( S i + S i + l + S i + 2 ) - -  

hi 
hi-1 

-- - C a ( 1 ) ; i - I . i  

(5.25) 

Using equations (5.20) and (5.23)-(5.25) in equation (5.18), one can write the 
equations (3.22) for q = 3. As such they are cumbersome and therefore useless. 
However, for the leading term in equation (1.4), one can replace the fi, Ri, Si, . . . by 
continuous functions 

fi nf (x  1, Ri - nR ( x ) ,  si - n Z S ( x ) ,  i - n x .  (5.26) 

The resulting equations are simple. Equations (5.23)-(5.25) are rewritten as 

(5.27) 2 (c /n  b ( l ) ; i + 3 , i  = 2gf3, 

(C/n)a(l);i+T,i =Ca(l);i,i+J=R +6g(S+R2)-(x/2) =f ( l+6gR) ,  (5.28) 
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while equation (3.22) for q = 3 gives 

6gf2(1 +6gR)[(1+6gR)2+2gf(l+6gR)+8g2f2]+~2f(l+6gR)=~4(R +f), (5.29) 

and 

2gf3{c2+ (1 +6gR)3 + 12gf(l+6gR)'+ 24g3f3} = c4S. (5.30) 

Equations (5.28)-(5.30) determine f, R and S. One can eliminate S quite easily. To 
eliminate R is a little lengthy, though it presents no difficulties. 

For still higher values of p ( p  a 4) equation (3.22) contains the necessary informa- 
tion to obtain, at least implicitly, the leading term as n + CO of the integral (1.1). But, as is 
already evident from the case p = 3, the algebra becomes progressively more tedious. 
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Appendix: Solution of equation (3.8) 

The matrices considered here are all of infinite order; for example, M will have matrix 
elements Mii with i, j = 1,2,3,  . . . . 

First consider the matrix equation 

[A, XI = B, (All  
with unknown X,  given A, 

1 i f j = i + l  
A . .  = (A2) 

" ( 0  otherwise, 

and a known matrix B. The general solution of equation (Al)  is the sum of that of the 
homogeneous equation 

[ A ,  X o ]  = 0, (A31 
and a particular solution of (Al). Writing the matrix elements of the homogeneous 
equation (A.3), one sees that 

x;1 = O , j 3 2 ;  Xy+l,k =X:k-l ,  k 3 2 ;  

while XYj is arbitrary for j > - 1. In other words 
m 

xo= X k A k  
k = O  

with arbitrary constants x k .  

verify that 
Using AAT = I, where AT denotes the transpose of A and U the unit matrix, one can 
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is a particular solution of equation ( A l ) .  Note that the matrix element (i, j )  on the right 
hand side of (A5) has only a finite number of non-zero terms for i and j finite. 

Therefore the general solution of ( A l )  is the sum of ( A 4 )  and (A5). 
Note that d islinear, 

d(B1 +B2) = d(B1) +d(B2).  

To express p as a series in a, we write 

cy = A + 6 ,  p=d(O)+P. 
Then equation (3.8) can be written as 

[A,  PI = [d('o), E l  + [ E  61, 

so that from the foregoing considerations 
CO 

P = 1 XkAk &([a(]), E ] )  -k d([P, E ] ) .  
k=O 

But pii = 0 = Pii for i s j .  Hence 

P =  d([d(.D), (.I)+&([P, 61). 

P = ~ ( [ & ( o ) ,  d)+~w([&(n), a, GI)+ 

Iterating this last equation several times we obtain 

or introducing the notation 

. . .  

one can write 

Let us say that the matrix M has the type m if Mii = 0 for i - j < m and Mii # 0 for 
some i - j = m. Thus the type of A is -1, while that of AT, E and @ is + 1 .  One can 
readily verify that the following statements are true: 

(i) If the type of M 1  is ml  and that of M2 is m2, then the type of M 1  fM2 is 3 min 
(ml,  m2) and that of MlM2 is 2 m l  + m2. 

(ii) If the type of M is m, then that of d ( M )  is m + 1. 
(iii) The type of &(I) is 1 .  
(iv) If the type of &&(E) is t ( k ) ,  then that of [dk(s), E ]  is 

(v) The type of d k ( C ? i )  is 3 2k  + 1 .  

t ( k ) +  1 and therefore 
that of d k + l ( ( Y )  is S t ( k ) + 2 ;  in other words t ( k + 1 ) 3 t ( k ) + 2 .  
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